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Abstraet--A simple model problem in optimal boundary heating of solids is analyzed by numerical methods. 
The physical objective of the present "steady-state optimal control" problem is to achieve a desired 
temperature profile along a segment of the solid boundary with a minimum amount of a boundary heat flux 
v,hich acts as the controlling function. The boundary integral equation methods are effectively used in the 
space discretizations of the necessary conditions for optimality of a performance index, ~ hich characterizes 
the physical goal mathematically. For minimization of the performance index the conjugate gradient method 
of optimization is utilized. Numerical results are presented for various values of the problem parameters 
which consist ofa Biot number and a weighting parameter in the performance index. It is argued that the 
weighting parameter behaves like a free "design" parameter which controls the degree of achievement of the 
desired temperature profile versus the amount of power consumed through the boundary heating, it is also 
pointed out that the suggested numerical solution algorithm for the boundary control problem constitutes a 

new and efficient solution procedure which has distinct advantages over other available methods. 

NOMENCI.ATURE 

Bi, Blot number ; 
g, gradient vector ; 
,/, performance index ; 
s, direction of search vector ; 
T, temperature (state fimction); 
T o, temperature vector at x = 0; 
u, boundary heat flux (control function); 
x, y, Cartesian coordinates. 

Greek symbols 

~, weighting parameter ; 
7, coefficient ; 
2, Lagrange multiplier (co-state function); 
2 l, co-state function vector at x = I. 

Subscript 

m, iteration number. 

Superscript 

T, transpose of a matrix. 

!. t,~raol)uc-rloN 

TIIERE are many industrial processes in which it is 
required to control the temperature distribution in a 
given solid material. Optimal boundary heating con- 
stitutes by far the most common application of the 
controlled heating of solids. The mathematical prob- 
lem falls into the general class of optimal control 
problems of distributed parameter systems (DPS). The 
state of the controlled system, for example, the tem- 
perature distribution in a solid, is usually governed by 
partial differential equations of various types [I]. 
When the state equation is elliptic and has no time 

variable involved, the problem becomes a steady-state 
control or static optimization problem [2]. If the state 
of the system is governed by a parabolic equation of the 
evolution type the control problem is then a dynamic 
one, and may be cast as an open-loop or feedback 
control problem [3-5]. 

The problem of determining the optimal control for 
DPS is generally very difficult to solve. Although it is 
possible to formulate the optimal control problem 
corresponding to many physical systems and to derive 
a set of optimality conditions, it is not easy to obtain tile 
solution. Computational solutions appear mandatory 
for even tile simplest of cases. In the past, numerical 
techniques have invo!ved various space, space-time 
and time discretizations. Finite difference methods 
(FDM) have been utilized to produce simple com- 
putational algorithms which result in "acceptable" 
approximations to the optimal solutions [6]. Recently, 
finite element methods (FEM) have been applied to 
various steady and dynamic optimal control problems 
by the present author I2-5]. 

In this investigation, boundary integral equation 
methods (BIEM), or the boundary element methods 
(BEM), are applied to a steady-state optimal problem 
[7, 8]. Specifically, the problem constitutes an optimal 
boundary heating of a solid plate. The desired goal for 
the controlled heating is to bring the temperature of a 
part of the boundary to a desired level. Since the 
control function (in this case, the boundary heat flux) 
mad also the desired "'observation" are on the boun- 
dary of the solid only, the method of BIEM proposed 
for discrctizing the system equations forms a very 
powcrfttl numerical technique for such boundary 
control problems. Although the BIEM has successfully 
been applied to such diverse fields as elastostatics and 
elastodynamics, plasticity, thermoelasticity and ther- 
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moplasticity, heat conduction and free surface flows, 
the method has not been utilized in optimal control 
problems of DPS so far in the literature [7, 9-13]. 
Besides the space discretizations of the system equa- 
tions by the BIEM, a given performance index which 
characterizes the desired physical goal is minimized by 
the conjugate gradient method of mathematical pro- 
gramming [15]. 

2..STATEMENT OF TIlE I'ROBLEM 

A simple model problem in optimal control of 
steady-state heat transfer will be analyzed in a square 
solid plate. In particular, it is desired to bring the 
temperature of a part of the boundary of the plate to a 
certain level through an optimal boundary heat flux 
acting as the control function. The 2-dim. differential 
equation which characterizes the steady-state heat 
conduction in the homogeneous plate may be written 
in a nondimensional form as 

(_32 T c32T 
- - = 0 ,  0 < x , v < l  (1) 

~  2 F- Oy 2 _ . _ 

where T = T ( x , y )  represents the state of the system, 
i.e. the temperature distribution in the plate. It is 
assumed that there are no distributed heat sources in 
the solid acting as distributed control functions (cf. [2, 
3]). The elliptic partial differential equation (1) re- 
quires a boundary condition to be specified at every 
point of the boundary and they are prescribed as 

~3T 
x = 0 ;  -=- = 0, (2) 

UX 

g)T 
x = l ;  7 = u ( Y ) ,  (3) 

17X 

~T 
y = l ;  - r - - + B i T = O  (5) 

oy 

where B i  is the dimensionless Biot number indicating 
the ratio of the surface conductance to the conduction 
of solid, and u (y) is the unknown boundary heat flux 
representing the control flmction. As such, the prob- 
lem is a typical example of a boundary control 
problem [4, 5]. The homogeneous third kind of 
boundary condition (5) may behave as the second or 
first kind as the given Biot number B i  tends to zero or 
infinity. The problem geometry and the system equa- 
tions are shown schematically in Fig. 1. 

If the function u (y) at x = 1 were given explicitly the 
heat transfer problem defined by equations (1)-(5) 
would have been easy to solve even analytically 
depending on the behavior ofu. However, the function 
u (y) is not given a p r i o r i  in the problem but constitutes 
an unknown control function to be determined, as well 
as the state function T ( x ,  y). The control function will 
be so chosen that a given physical objective is satisfied. 

Specifically this objective is to bring the temperature 
of the part ofthe boundary at x = 0 to a level of I in an 
"average" sense. Thus, a suitable measure of the 
nearness of the boundary temperature to that desired 
will have to be chosen. The present control problem 
deviates from the type of control problem known as the 
"exact" control problems in which the boundary 
temperature at x = 0 would have been required to be 1 
"exactly" at every point along the boundary segment. 

The problem would not be welt-posed without some 
form of constraint on the control function u, i.e. the 
boundary heat flux at x = 1. This constraint may be 
taken as forcing the heat flux as near as zero, again in 
an "average" sense. Thus, the stated objectives of the 
problem may be cast into a mathematical form as 
defined by a performance index J 

y = 0 ;  T = I ,  (4) lfo, J = ~ {[T(0, y) - 1] 2 - c~,, 2 (y)} dy (6) 

0 

> ~  

E 
E 

o: 
o 

H 

Heot  convect ion,  ProbLem unknown : 
aT Temperature,  T l x , y )  

~ + B i T . O  
8y Heat  f l ux ,  u(y) 

O ?T + a 2T 
Ox""- ~ ~ = 0 

B0und0ry heating, 

aT  = u{y)  

Prescribed tempera ture ,  T=I  

FIG. 1. Problem geometry and system equations. 

where ~ is a given weighting parameter. The first term 
in the above quadratic functional is the integral of the 
square of the deviation of the temperature from the 
desired temperature level 1 over the boundary section 
at x = 0. The second term is, on the other hand, the 
integration of the square of the control function u (y) 
with a weighting coefficient over the section of the 
boundary where x = 1. 

The problem parameter c~ plays an important role in 
the problem. It combines actually two physical objec- 
tives in a linear combination by weighting. The pre- 
viously stated physical objectives of the problem are 
attained with a relative degree of achievement accord- 
ing to the value of ~ when the performance index J is 
minimized. It can be argued that taking a smaller value 
for ~x would result in the boundary temperature at x = 
0 nearer to the desired level. Nevertheless, if the fuel 
cost necessary for the boundary heat flux is relatively 
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mportant one might not choose a very small value for 
t. tlence, the function u(y)which minimizes J under 
:he system constraints (1)-(5)is the desired optimal 
aeat flux solution. 

3. METiIOD OF SOLUTION 

1.1. Necessary conditions for optimality 
The steady-state boundary control problem in- 

,estigation may be reformulated by finding the nec- 
,ssary conditions for optimality, i.e. the necessary 
!onditions for J to be an extremum while the heat 
:onduction equation (l) and the boundary conditions 
2)-(5) are satisfied. These conditions which are a set of 
9artial differential equations and some transversality 
:onditions prescribed on the boundary of the domain 
:an be derived by applying Pontryagin's minimum 
?rinciple [6] (basically a calculus of variations me- 
:hod) to the optimal control problem in question. 
l'hus, combining the performance index J with the 
~tate equation constraint (1) by means of a Lagrange 
multiplier (also called adjoint or co-state function) 
).(x, y), and then forcing the first variation of J equal to 
zero under the given boundary constraints (2)-(5) 
render the following conditions for optimality: 

State equatio11. 

~2 T O2T 
?x 2 + - -  0. (7) ?,y2 

Co-state equation. 

022 ?,22 
?x 2 I- Or-- ~- = 0. (8)  

Transrersality comlitions. 

?T 
x = 0 ;  : - = 0 ,  (9) 

C X  

C/. 
x = 0 ;  7 - + T = I ,  (10) 

CX 

?T 
x = l ;  -=- = u, (11) 

('X 

?2 
x = 1; =----~0, (12) 

CX 

x = l ;  ) .+  7u = 0, 

.v=O;  T = I ,  

y = 0 ;  2 = 0 ,  

kT 
y = l ;  ~ - - + B i T = O ,  

Cy 

~2 
y = l ;  : - +  Bi).=O. 

ty 

We may note that the linear equations (7)-(17)involve 

three unknown functions, namely, T(x, y), 2(x, y) and 
u 0')- Since the "observation" and also the control is on 
the boundary of the solution domain, the state and co- 
state equations are not coupled directly, as would have 
been the case in distributed "observation" and/or con- 
trol cases [2-5]. The stale function T, co-state func- 
tion 2 and control function u are coupled through the 
transversality conditions prescribed on the boundary. 
Equation (13) may also be shown to be the gradient of 
the performance index J with respect to the control 
function u [6]. 

It is possible to eliminate u from the set of optimality 
conditions through equations (11) and (13), thus 
leaving the conditions in terms o fT  and 2 only. Hence, 
the present steady-state optimal control problem may 
be formulated as a boundary value problem of ma- 
thematical physics. Since further combining of T and 2 
appears to be difficult any numerical solution of the 
problem will involve an iterational procedure between 
the two unknown functions. In the present method of 
solution, instead of treating the problem as a usual 
boundary value problem an optimizational technique 
will be adopted in which the performance index J is 
minimized by the conjugate gradient method of ma- 
thematical programming. 

3.2. Treatment of the optimal control problem as a 
nlathenlatical progranlnlin9 problem 

The steady-state optimal control problem requires 
the minimization of the performance index J subject to 
the state and co-state partial differential equations and 
the relevant transversality conditions. The stated pro- 
blem may be formulated as a standard mathematical 
programming problem if the infinitely large number of 
variables inherent in the continuous-space optimal 
control problem are reduced to a finite number 
through any kind of space discretization, for example, 
finite differences, finite elements or boundary elements. 
In the present study the BIEM is chosen to discretize 
the continuous space variables since the method offers 
some special advantages for this specific boundary 
control problem over other available "domain" type 
methods. 

3.3. Boumtary element discretizations of the state and 
co-state equations 

The BIEM (or BEM) is a powerful means ofsolving 
field problems in continuum mechanics. In this me- 

(13) thod the field equations are transformed into a set of 
integral equations on the boundary by a weighted 

(14) residual formulation in whicli the fundamental so- 
lution of the original problem is utiliscd as the 

(15) weighting function. Since one than deals with an 
integral equation defined along the boundary, the 

(16) dimensionality of the problem is practically reduced 
by one. Although the solution to the integral equation 

(17) only provides values along the boundary of the 
domain, solutions for interior points may be found by 
numerical quadratures, if desired. 

In this study, the BIEM is adopted to discretize the 
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state and co-state equations (7) and (8), alternatively. 
"l-he set of optimality conditions and the performance 
index J are such that there is even no need to evaluate 
the solution hmctions in the interior of the domain. 

Let us call the state equation (7) and the boundary 
conditions (9), (11 ), (14) and (16) as the T-problem. If 
we assume for a moment that the control function u (v) 
is known explicitly, then the T-problem could be 
solved, for example, by the BIEM. The solution of a 
Laplace equation with mixed boundary conditions by 
the BIEM is analyzed in ref. [7]. In fact, it contains a 
simple computer program in FORTRAN for the 
numerical solution of such potential problems. Al- 
though only the first and second kind of boundary 
conditions are treated in the program, the incor- 
poration of the third kind of the boundary condi- 
tion, equation (16), may be done very easily [8]. 

Similarly, the co-state equation (8) and the boun- 
dary conditions (10), (12), (15) and (17) will be called 
the ';.-problem which constitutes another potential 
problem. Solution of this potential problem by the 
BIEM may proceed easily if the temperature values at x 
= 0 were known explicitly. 

An iterational method of solution will be adopted to 
find the optimal control function u. First of all, the 
boundary of the solution domain is divided into 
elements [7]. Initial numerical values are then assumed 
for the control vector uo at the interconnecting points 
of the boundary elements of x = 1. The subscript 0 
indicates that the vector is an initial guess vector. On 
the other hand, linear boundary elements are chosen 
for the T- and 2-problem, that is, both T and ). 
functions and their normal derivatives are interpolated 
linearly over each boundary element [7]. 

Using the uo vector for the boundary condition (11), 
solution of the T-problem then proceeds according to 
the standard BIEM resulting in the solution of the 
nodal values of the temperature T and its normal 
derivative along the entire boundary. In particular we 
may call the resultant temperature nodal values at x = 
0 by the vector (To) o where the inner subscript 0 refers 
to the temperature values at x = 0, while the outer 
subscript 0 indicates that the solution corresponds to 
the initial control vector Uo. 

The .;.-problem may be solved similarly by the BIEM 
using the previously obtained (To) o vector in the 
boundary condition (10). Only the 2 values along the 
boundary section x = 1 are needed to calculate the 
gradient of d by equation (13). Thus, these 2 values may 
be denoted by the vector (200 where the subscript 1 
refers to the boundary segment at x = 1 and the 
subscript 0 indicates that the vector corresponds to the 
(To) o and consequently to the Uo vectors. 

It is now possible to evaluate the performance index 
J, equation (6), and its gradient with respect to the 
control function u, equation (13), by utilizing the 
solution vectors (To) o and (2~)o, and also the initial 
guess vector u 0. Better estimates of the control vector 
are to be found by the conjugate gradient method of 
optimization which is considered next. 

3.4. Conjugate gradient method 
The steady-state optimal control problem may now 

be solved by the conjugate gradient method of ma- 
thematical programming after the problem has been 
discretized in space by use of the BIEM. Standard 
FORTRAN programs exist in the literature for the 
optimization method which finds the unconstrained 
minimum of a multivariable, nonlinear function [14]. 
The basic procedure of the conjugate gradient method 
is described by Fletcher and Reeves [15]. The method 
is an iterative unconstrained optimization technique 
based on the calculation of the gradient of the function 
to be minimized. It has been applied to optimal control 
problems with good results previously in the literature 
[5]. 

In the present problem the function to be minimized 
is the performance index d taken as a nonlinear 
function of the discretized control vector u. Hence, at 
the ruth iterational level the gradient of d with respect 
to the'~ector u,,, can be found by means ofequation (13) 
and is given as the gradient vector g,, that is 

?Y 
- -  = g,,,  = ( 2 , ) . ,  + ~ u . , .  ( 1 8 )  
t~U m 

The complete numerical method of solution for the 
optimal control problem, including the iterational 
method of conjugate gradient technique, can be sum- 
marized as follows: 

1. For m = 0, guess the initial control vector u,,. 
2. Solve the T-problem using u,, to obtain (To)., 

V e c t o r .  

3. Sob,'e the 2-problem using (To)., to obtain 0"t)m 
vector. 

4. Calculate the gradient vector g,,, by equation (18). 
5. Calculate the conjugate gradient parameter 12,, 

given by 

g,r g,, 
"ltm = T , with 12o = 0 if m = 0 

g,,,- 1 g,,,- 1 

where the superscript T refers to the transpose of a 
vector. 

6. Calculate the direction of search vector s,,, where 

S,., = - -  g . ,  q-  I t . ,  S . , _  I" 

7. Iterate on the control 

Urn+ I -~- Um -t- ~'mSm 

where ;.,,, is the coefficient determined by performing a 
1-dim. minimization along the direction of search. 

8. Increase m and repeat steps 2-7 until specified 
convergence criteria are satisfied. 

During the above minimization procedure the evalu- 
ation of J is needed for each iteration level m. Such 
evaluations are done by approximating the definite 
integrals in d in terms of finite sums ofintegrands with 
weighting coefficients, that is by Gauss quadratures. 
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FIG. 2. Performance index J for :z = 0.001. 

4. N U M E R I C A L  R E S U L 1 S  

Numerical  results are presented for the model 
problem of optimal boundary heating of a square 
plate. The given control problem involves two para- 
meters, namely Bi and ~. It is interesting to note the 
effects of limiting values of these parameters on the 
optimal solutions. When the dimensionless Blot num- 
ber Bi is identically zero, the boundary condition (5) at 
y = I reduces to the insulation boundary condition. In 
this case the optimal solution of the control problem is 
a trivial one for any value of ~. That  is, no boundary 
heating would be necessary with u = 0 as the 
temperature distribution in the plate will be T ( x ,  y) = 
1 for Bi = O. For this case, the quadratic performance 
index J attains its absolute minimum, i.e. J becomes 
equal to zero. 

If the Biot number Bi tends to infinity the boundary 
condition (5) reduces to the prescribed temperature 
boundary condition T = 0 at y = 1. This limiting 
value of Bi results in the requirement of the greatest 
amount  of boundary heating at x = 1 to obtain the 
physical objective as nearly as possible for a fixed value 
of ~. 
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0 2  0 4  0 6  0 8  tO 

Y 

As the weighting parameter ~z tends to zero there is 
less and less constraint on the control function u. Thus, 
the boundary control function may be chosen "freely" 
to meet the desired objective. At the other extreme with 

having a very large value the temperature distri- 
bution at the boundary section x = 0 would hardly 
reach the desired level of 1 (for large values of Bi) due to 
the heavy constraint that forces the control function to 
zero. In fact, if both ~ and Bi are taken as infinitely 
large the temperature distribution in the whole plate 
would be a linear ftmction ranging from T = 1 a t ) '  = 0 
t o T  = 0 a t 3 ' =  1. 

In Fig. 2, the performance index d is plotted against 
the Biot number Bi for ~ = 0.001. It may be noticed 
from the figure that for a fixed degree ofconstraint  on u 
(i.e. for a fixed value of t0  the dependency o f . / i s  almost 
asymptotic for small and large values of Bi. 

In Fig. 3, the optimal boundary heat flux u is plotted 
as a function of.v for different values of the weighting 
parameter c~ when Bi is fixed as 5. For smaller values of 
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FIG. 3. Optimal control function u0') for different a values FIG. 4. Boundary temperature T(0, y) for different :~ values 
when Bi = 5. when Bi = 5. 
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~(, the control function u adopts higher distributed 
values as shown in the figure. Figure 4 represents the 
boundary temperature distribution at x = 0 against 
the space coordinate y for different ~ values when Bi = 

5. Thus the last two figures are the optimal solutions 
corresponding to the same set of~ values when the Blot 
number Bi is held fixed. 

Figures 5 and 6 represent the optimal solutions 
when the weighting parameter c~ is held fixed at 0.001. 
In Fig. 5 the optimal control function u is shown as a 
function of 3" for different values of Bi, and cor- 
respondingly the boundary temperature at x = 0 is 
shown for the same set of Bi values in Fig. 6. 

5. CONCLUSIONS 

A simple model problem in optimal control heat 
transfer is analyzed by numerical methods. In parti- 
cular the heating of a square solid plate by an optimal 
boundary heat flux is investigated. The physical objec- 
tives of the problem are taken as to bring the tempera- 
ture of a part of the boundary to a desired level by 
applying a "minimum" amount of a boundary heat 
flux. 

First, the necessary conditions for optimality of a 
performance index which characterizes the physical 
objectives are found by calculus of variations using a 
Lagrange multiplier technique. These necessary con- 
ditions are then discretized in space by using the 
boundary integral equation methods. Minimization of 
the performance index by the conjugate gradient 
method of optimization then yields the optimal sol- 
utions of the problem, that is, the optimal boundary 
heat flux and the corresponding temperature distri- 
bution in the plate. Some conclusions may be drawn 
from the analysis of the control problem, which may be 
given as follows: 

(1) The present model problem involves two para- 
meters which strongly influence the optimal solutions. 
The Blot number Bi is a physical parameter which may 

be fixed in a given situation. The weighting parameter 
may, on the other hand, be interpreted as a free 
"design" parameter, which has to be chosen and 
adjusted in the light of experience and computer 
results to achieve the stated objectives on a relative 
basis. The cost of the fuel consumption for the 
boundary heat flux may play an important role in 
choosing the value for c~. 

(2) As the control problem falls into the class of 
boundary control, the boundary integral equation 
methods constitute especially very efficient numerical 
techniques of space discretization, with no need of any 
domain integrations. 

(3) Although the finite element or finite difference 
methods could have been utilized for the present 
model problem, the boundary integral equation me- 
thods have a distinct advantage over such domain 
type of methods in that the dimensionality of the 
problem is practically reduced by one since one deals 
with integral equations defined over the boundary 
only. 

(4) The "observation" and "control" may be present 
in the domain as well as on the boundary in other 
control problems. Such cases would arise if, for 
example, the temperature profile of the whole plate is 
controlled by a distributed heat source in the plate. 
The boundary integral equation methods could still be 
used for such problems. However, simple numerical 
"domain" quadratures would be necessary in order to 
evaluate some "source" terms in the partial differential 
equations of the necessary conditions for optimality. 

(5) Computer programs available in the literature 
for the boundary integral equation and conjugate 
gradient methods are very helpful in the application of 
these methods to a wide variety of optimal control 
problems in heat transfer. 
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METtiODES DE L'EQUATION INTEGRALE LIMITE ET DU GRADIENT CONJUGE POUR 
LE CHAUFFAGE OPTIMAL DES SOLIDES AUX FRONTIERES 

R~sum6--Un mod6le simple de probl~me de chauffage optimis6 de solides par les fronti6res est analys6 par 
des m&hodes num~riques. Le but physique de ce probl~me ~i "commande optimale permanente ~ est d'obtenir 
un profil de temp6rature donn6 le long d'un segment de la fronti~re solide avec une quantit6 de chaleur 
minimale. Les m&hodes de l'6quation int~grale limite sont utilis~es dans les discr~tisations spatiales des 
conditions n~cessaires pour I'optimalit6 d'un indice de performance qui caract~rise mathdmatiquement 
robjectif physique. On utilise la m6thode du gradient conjugu6 pour minimiser rindice de performance. 

Des rfsultats num6riques sont pr6sent6s pour diff6rentes valeurs des param~tres du probl6me qui sont un 
nombre de Biot et un param6tre de pond~ration darts l'indice de performance. Ce dernier paramdtre agit 
comme un param~tre libre "'de conception" qui commando le degr6 d'ach~vement du profil de temperature 
d6sir~ en fonction de la quantit6 d'~nergie consommfie ~i travers la paroi chauff6e. On montre aussi que la 
solution num6rique algorithmique constitue une nouvelle proc6dure efficace qui a des avantages distincts de 

ceux des autres m~thodes connues. 

GRENZ-INTEGRAL-GLEICHUNG UND KONJUGIERTE GRADIENTEN VERFAHREN FOR 
OPTIMALE HEIZUNG EINER FESTSTOFFBERANDUNG 

Zusammenfassung--Ein einfaches Modellproblem zur optimalen Rand~heizung yon Festoffen wird mit 
numerischen Verfahren untersucht. Das physikalische Ziel dieses "steady-state optimal control". Problems 
ist es, ein vorgegebenes Temperaturprofi! entlang eines Segments der Feststoffherandung mit minimalem 
Gesamtw/irmestrom, der als Kontrollfunktion dient, zu erhalten. Die Grenz-lntegral-Gleichungs-Verfahren 
wurden vorwiegend zur Optimierung eines Leistungsindex, der das physikalische Ziel mathematisch 
charakterisiert, bei der Diskretisierung der geforderten Bedingungen benutzt. Zur Minimierung des 
Leistungsindex wurde das konjugierte Gradientenoptimierungsverfahren verwendet. 

Numerisehe Ergebnisse werden for verschiedene Werte des Problemparameters, der aus einer Biot-Zahl 
und einem Wichtungs-Parameter im Leistungsindex besteht, gezeigt. Es wird bewiesen, daB sich der 
Wichtungsparameter wie ein freier "Form"-Parameter verh/ilt, der den Grad der 0bereinstimmung eines 
bestimmten Temperaturprofits in Abh/ingigkeit yon der dutch die Randheizung verbrauchten Gesamtlei- 
stung kontrolliert. Es wird zus//tzlich hervorgehoben, daB der vorgeschlagene numerische L6sungsalgorith- 
mus for Probleme der Randkontrolle einen neuen und wirkungsvollen L6sungsweg darstellt, der 

verschiedene Vorzfige gegen/iber anderen verffigbaren Methoden besitzt. 
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| I C H O . r l b 3 O B A t t l I E  F P A H H q H O F O  t l H T E F P A J ] b H O F O  Y P A B H E H H ~ I  |1 
C O H P S 1 ) K E H H b l X  F P A J 2 t l E H T H b l X  METO, / IOB ~.r l f l  O I 1 P E ~ E . r l E H t l $ 1  

O r l T H M A . r l b t t O F O  F P A H i l q t l O F O  H A F P E B A  T B E P J 2 b l X  TE.q 

AlllloI-aUH~l--Lhlc.lelltlbLMl! MeTO.2aMH atm.ali31ipyelca npocTaa Mo.'le.~b onT~l~ta.ai, Horo rpa l l l tq l lo ro  
imrpeaa  l:Bep..2blX Te.a. C L~H31tHeCKOH TOqKtl 3petllta npo6.aexm " 'cTaul lo t tapt loro  OI1TIIMa.'It, HOI-O 
KOtlTpO.'I~'" 3ar.aro, taerca B ,~OCTII)KelIltll t teo6xo; l l tMoro rlpoq~tL-l~ r exmepaTyp  B~'lO.'lb yqacTrca 
TBep~lofi rpal t l l l lbl  Ilpll MtltlltMa.'IbllOii Be.'lltq|ltle lelL'lOBOrO IIOTOKa ila rpat l l l l le ,  iII-patolllero pO.'lb 
KOItl'po.qztpylotttei] qbytlKtllflt. MeTo,abl l-pallllqtlOFO illtTerpa~'lblloro ypaBtlelll ta 9~f~eKTItBIIO IICHO.'Ib- 
3yloIcfl  h.'lJl IlpocTpalICIBelIIIOH 31ttCKpeTIt3aLIIIII yC,qOB|Ii/, tleOOXO,~IHMblX 3~L'l~I rlO.'lyqelllt~l Olll l lMa3b- 
tlOFO pe~KtlMItOFO 11ll~2eKca, .MaTe.MalllqeCKll xapaKrepl t3yrOtnero qbll311qecKyto lle.'Ib 3a.qaqll. ~.-la 
MIIIIIIMIt3.'~IIIIII peTgllMHOfO itll~eKca ttCI10.qb3yeTcfl corlpflTgetlllbili rpa;1Helllllbll] MeTO.20I1TIIMII3alIIIII. 

~Ipe~qcraB.qettbl qllC.'leHHble 311aqgtlltR pa3,qllttttblX napaMe' fpoa  3ahaql l ,  BXO~fllLItlX B pe)KltMItl~Iii 
IIIIz2eKC, BK.'ltoqalOllI|lti tltlC~'lO l~tlO l! B3BellleHHblil napaMerp .  ~blCKa3allO COMHelIIte B cnpaBe=l.attBOCttf 
yTBep~,aetlll~, q r o  B3BetHeHItblti n a p a x l e r p  Be,ae-f ce6a  KaK CBO60,.2|lblH "pac t le l l lb l l ]  "" napax~exp. 
Orlpe.ae.q~llOtllttfi crenet~b ,llociIlTg(ellllfl HeO6XO,/IlIMOFO IlpO~H.'l~l TeMrteparyp a 3aBIICIIMOCTII Ol 
KO.qllqeCTBa nor .aomaextof i  3a c'~eT FpaltltHHOI'O tlal-peBa 9HepFIlll. [loKa3al~o Ta r~e ,  q l o  llpe,2.'lO~elt- 
IlblH a.'ll-Op|llM qttC."lellttOI-O pettlelllDl 3a,2aqll i-patlllqltOl-O KOWI'pO.'I~ llpe~'lCTaBSlfleT CO6Oii tlOBhlfi 
II 9(~(~eKTtlB|lblJi MeTO;~ pettletttlfl, KOTOpblfi o6.1ar~aex flBIIblM|l llpellMytlleCTBaMIl llepe,a ~pyl-IIMli 

IIMelOIIItlMIICfl MeTo,~a.M II. 


