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Abstract—A simple model problem in optimal boundary heating of solids is analyzed by numerical methods.
The physical objective of the present “steady-state optimal control” problem is to achieve a desired
temperature profile along a segment of the solid boundary with a minimum amount of a boundary heat flux
which acts as the controlling function. The boundary integral equation methods are effectively used in the
space discretizations of the necessary conditions for optimality of a performance index, which characterizes
the physical goal mathematically. For minimization of the performance index the conjugate gradient method
of optimization is utilized. Numerical results are presented for various values of the problem parameters
which consist of a Biot number and a weighting parameter in the performance index. It is argued that the
weighting parameter behaves like a free “design” parameter which controls the degree of achievement of the
desired temperature profile versus the amount of power consumed through the boundary heating. It is also
pointed out that the suggested numerical solution algorithm [or the boundary control problem constitutes a
new and efficient solution procedure which has distinct advantages over other available methods.

NOMENCLATURE
Bi, Biot number;
g gradient vector;
J, performance index ;
s, direction of search vector;

T, temperature (state function);

Te,  temperature vector at x =0;

u, boundary heat flux (control function);
X, y, Cartesian coordinates.

Greck symbols

o, weighting parameter

T coefficient;

7y Lagrange multiplier (co-state function);

Ay, co-state function vector at x = 1.
Subscript

m, iteration number.
Superscript

T, transpose of a matrix.

1L INTRODUCTION

ThEere are many industrial processes in which it is
required to control the temperature distribution in a
given solid material. Optimal boundary heating con-
stitutes by far the most common application of the
controlled heating of solids. The mathematical prob-
lem falls into the general class of optimal control
problems of distributed parameter systems (DPS). The
state of the controlled system, for example, the tem-
perature distribution in a solid, is usually governed by
partial differential equations of various types [1].
When the state cquation is elliptic and has no time

variable involved, the problem becomes a steady-state
control or static optimization problem [2]. If the state
of the system is governed by a parabolicequation of the
cvolution type the control problem is then a dynamic
one, and may be cast as an open-loop or feedback
control problem [3-5].

The problem of determining the optimal control for
DPS is generally very difficult to solve. Although it is
possible to formulate the optimal control problem
corresponding to many physical systems and to derive
a sct of optimality conditions, it is not easy to obtain the
solution. Computational solutions appear mandatory
for even the simplest of cases. In the past, numerical
techniques have involved various space, space-time
and time discretizations. Finite difference methods
(FDM) have been utilized to produce simple com-
putational algorithms which result in “acceptable”
approximations to the optimal solutions [6]. Recently,
finite element methods (FEM) have been applied to
various steady and dynamic optimal control problems
by the present author [2-5].

In this investigation, boundary integral equation
methods (BIEM), or the boundary element methods
(BEM), are applied to a steady-state optimal problem
[7, 8] Specifically, the problem constitutes an optimal
boundary heating of a solid plate. The desired goal for
the controlled heating is to bring the temperature of a
part of the boundary to a desired level. Since the
control function (in this case, the boundary heat flux)
and also the desired “observation™ are on the boun-
dary of the solid only, the method of BIEM proposed
for discretizing the system equations forms a very
powerful numerical technique for such boundary
control problems. Although the BIEM has successfully
been applied to such diverse ficlds as clastostatics and
elastodynamics, plasticity, thermoelasticity and ther-
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moplasticity, heat conduction and free surface flows,
the method has not been utilized in optimal control
problems of DPS so far in the literature [7, 9-13].
Besides the space discretizations of the system equa-
tions by the BIEM, a given performance index which
characterizes the desired physical goal is minimized by
the conjugate gradient method of mathematical pro-
gramming [15].

2. STATEMENT OF THE PROBLEM

A simple model problem in optimal control of
stecady-state heat transfer will be analyzed in a square
solid plate. In particular, it is desired to bring the
temperature of a part of the boundary of the plate to a
certain level through an optimal boundary heat flux
acting as the control function. The 2-dim. differential
equation which characterizes the steady-state heat
conduction in the homogeneous plate may be written
in a nondimensional form as

a*T

ax?

3T
—=0, 0<x,y<1 (1)

8y2 =4
where T = T(x, y) represents the state of the system,
ie. the temperature distribution in the plate. It is
assumed that there are no distributed heat sources in
the solid acting as distributed control functions (cf. [2,
3]). The elliptic partial differential equation (1) re-
quires a boundary condition to be specified at every
point of the boundary and they are prescribed as
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Fic. 1. Problem geometry and system equations.
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where Bi is the dimensionless Biot number indicating
the ratio of the surface conductance to the conduction
of solid, and # {y) is the unknown boundary heat flux
representing the control function. As such, the prob-
lem is a typical example of a boundary control
problem [4, 5]. The homogeneous third kind of
boundary condition (5) may behave as the second or
first kind as the given Biot number Bi tends to zero or
infinity. The problem geometry and the system equa-
tions are shown schematically in Fig. 1.

If the function u (y) at x = 1 were given explicitly the
heat transfer problem defined by equations (1)-(5)
would have been easy to solve even analytically
depending on the behavior of v. However, the function
u(y}is not given a priori in the problem but constitutes
an unknown control function 1o be determined, as well
as the state function T(x, y). The control function will
be so chosen that a given physical objective is satisfied.

Specifically this objective is to bring the temperature
of the part of the boundary atx = Otoalevelof 1 in an
“average” sense. Thus, a suitable measure of the
nearness of the boundary temperature to that desired
will have to be chosen. The present control problem
deviates from the type of control problem known as the
“exact” control problems in which the boundary
temperature at x = 0 would have been required to be 1
“exactly” at every point along the boundary segment.

The problem would not be well-posed without some
form of constraint on the control function u, ie. the
boundary heat flux at x = 1. This constraint may be
taken as forcing the heat flux as near as zero, again in
an “average” sense. Thus, the stated objectives of the
problem may be cast into a mathematical form as
defined by a performance index J

1
J =% J {{TO,» =1 —a?(y)}dy  (6)
0

where « is a given weighting parameter. The first term
in the above quadratic functional is the integral of the
square of the deviation of the temperature from the
desired temperature level 1 over the boundary section
at x = 0. The second term is, on the other hand, the
integration of the square of the control function u(y)
with a weighting coefficient over the section of the
boundary where x = 1.

The problem parameter « plays an important role in
the problem. It combines actually two physical objec-
tives in a linear combination by weighting. The pre-
viously stated physical objectives of the problem are
attained with a relative degree of achievement accord-
ing to the value of & when the performance index J is
minimized. It can be argued that taking a smaller value
for a would result in the boundary temperature at x =
0 nearer to the desired level. Nevertheless, if the fuel
cost necessary for the boundary heat flux is relatively
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mportant one might not choose a very small value for
«. Hence, the function u{y) which minimizes J under
‘e system constraints (1)-(5) is the desired optimal
weat flux solution.

3, METHIOD OF SOLUTION

1.1. Necessary conditions for optimality

The steady-state boundary control problem in-
restigation may be reformulated by finding the nec-
:ssary conditions for optimality, ie. the necessary
‘onditions for J to be an extremum while the heat
:-onduction equation (1) and the boundary conditions
2)-(5)are satisfied. These conditions which are a set of
sartial differential equations and some transversality
:onditions prescribed on the boundary of the domain
:an be derived by applying Pontryagin’s minimum
srinciple [6] (basically a calculus of variations me-
thod) to the optimal control problem in question.
Thus, combining the performance index J with the
state equation constraint (1) by means of a Lagrange
multiplier (also called adjoint or co-state function)
J(x, y), and then forcing the first variation of J equal to
zero under the given boundary constraints (2)-(5)
render the following conditions for optimality:

State equation.

T N a*T 0 )
ot ooyt

Co-state equation.
3 ¢4
—+-—=5=0 (8).
axt o Ayt

Transversality conditions.

¢T

x=0; o, )
X

(=0 L4T=1, (10)
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x=1; —=u, (11)
X

v=1; <L<o, (12)
X

x=1; 2+au=0, (13)

y=0; T=1, (14)

y=0; /=0, (15)

y=1; “—+BiT=0, (16)
(‘)‘
i .

v=1; T\+Bi/.=0. (17)

We may note that the linear equations (7)-(17) involve
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threc unknown functions, namely, T(x, y), A(x, y) and
u (). Since the “obscrvation” and also the controlis on
the boundary of the solution domain, the state and co-
state equations are not coupled directly, as would have
been the case in distributed “observation™ and/or con-
trol cases [2-5]. The state function T, co-state func-
tion Z and contro! function u are coupled through the
transversality conditions prescribed on the boundary.
Equation {13) may also be shown to be the gradient of
the performance index J with respect to the control
function u [6].

Itis possible to eliminate u from the set of optimality
conditions through equations (11) and (13), thus
feaving the conditions in terms of 7" and / only. Hence,
the present steady-state optimal control problem may
be formulated as a boundary value problem of ma-
thematical physics. Since further combining of T and 4
appears to be difficult any numerical solution of the
problem will involve an iterational procedure between
the two unknown functions. In the present method of
solution, instead of treating the problem as a usual
boundary value problem an optimizational technique
will be adopted in which the performance index J is
minimized by the conjugate gradient method of ma-
thematical programming.

3.2. Treatment of the optimal control problem as a
mathematical programming problem

The steady-state optimal control problem requires
the minimization of the performance index J subject to
the state and co-state partial differential equations and
the relevant transversality conditions. The stated pro-
blem may be formulated as a standard mathematical
programming problem if the infinitely large number of
variables inherent in the continuous-space optimal
control problem are reduced to a finite number
through any kind of space discretization, for example,
finite differences, finite elements or boundary elements.
In the present study the BIEM is chosen to discretize
the continuous space variables since the method offers
some special advantages for this specific boundary
control problem over other available “domain™ type
methods.

3.3. Boundary element discretizations of the state and
co-state equations

The BIEM (or BEM)is a powerful means of solving
field problems in continuum mechanics. In this me-
thod the field equations are transformed into a sct of
integral equations on the boundary by a weighted
residual formulation in whicli the fundamental so-
lution of the original problem is utiliscd as the
weighting function. Since one than deals with an
integral equation defined along the boundary, the
dimensionality of the problem is practically reduced
by one. Although the solution to the intcgral equation
only provides values along the boundary of the
domain, solutions for interior points may be found by
numerical quadratures, if desired.

In this study, the BIEM is adopted to discretize the
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state and co-state equations (7) and (8), alternatively.
The sct of optimality conditions and the performance
index J are such that there is even no need to evaluate
the solution functions in the interior of the domain.

Let us call the state equation (7) and the boundary
conditions (9), (11), (14) and (16) as the T-problem. If
we assume for a moment that the control function u(y)
is known explicitly, then the T-problem could be
solved, for example, by the BIEM. The solution of a
Laplace equation with mixed boundary conditions by
the BIEM is analyzed in ref. [7]. In fact, it contains a
simple computer program in FORTRAN for the
numerical solution of such potential problems. Al-
though only the first and second kind of boundary
conditions are treated in the program, the incor-
poration of the third kind of the boundary condi-
tion, equation (16), may be done very easily [8].

Similarly, the co-state equation (8) and the boun-
dary conditions (10), (12), {15) and (17) will be called
the /-problem which constitutes another potential
problem. Solution of this potential problem by the
BIEM may proceed easily if the temperature values at x
= 0 were known explicitly.

An iterational method of solution will be adopted to
find the optimal control function u. First of all, the
boundary of the solution domain is divided into
elements [ 7]. Initial numerical values are then assumed
for the control vector u, at the interconnecting points
of the boundary elements of x = 1. The subscript 0
indicates that the vector is an initial guess vector. On
the other hand, linear boundary elements are chosen
for the T- and Z-problem, that is, both T and A
functions and their normal derivatives are interpolated
linearly over each boundary element [7].

Using the u, vector for the boundary condition (11),
solution of the T-problem then proceeds according to
the standard BIEM resulting in the solution of the
nodal values of the temperature T and its normal
derivative along the entire boundary. In particular we
may call the resultant temperature nodal valuesat x =
0 by the vector (T,), where the inner subscript 0 refers
to the temperature values at x = 0, while the outer
subscript 0 indicates that the solution corresponds to
the initial control vector ug.

The 2-problem may be solved similarly by the BIEM
using the previously obtained (T,), vector in the
boundary condition (10). Only the / values along the
boundary section x = 1 are needed to calculate the
gradient of J by equation (13). Thus, these Z values may
be denoted by the vector (4,), where the subscript 1
refers to the boundary segment at x = 1 and the
subscript Oindicates that the vector corresponds to the
(T,), and consequently to the u, vectors.

It is now possible to evaluate the performance index
J, equation (6), and its gradient with respect to the
control function u, equation (13), by utilizing the
solution vectors (T,), and (4,),, and also the initial
guess vector u,. Better estimates of the control vector
are to be found by the conjugate gradient method of
optimization which is considered next.
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3.4. Conjugate gradient method

The steady-state optimal control problem may now
be solved by the conjugate gradient method of ma.
thematical programming after the problem has been
discretized in space by use of the BIEM. Standard
FORTRAN programs exist in the literature for the
optimization method which finds the unconstrained
minimum of a multivariable, nonlinear function [14],
The basic procedure of the conjugate gradient method
is described by Fletcher and Reeves [15]. The method
is an iterative unconstrained optimization technique
based on the calculation of the gradient of the function
to be minimized. It has been applied to optimal contro]
problems with good results previously in the literature
[5]-

In the present problem the function to be minimized
is the performance index J taken as a nonlinear
function of the discretized control vector u. Hence, at
the mth iterational level the gradient of J with respect
to the vector u,, can be found by means of equation {13)
and is given as the gradient vector g, that is

éJ
-~ = gm = (Zl)nx + oy,

" m

(18)

The complete numerical method of solution for the
optimal control problem, including the iterational
method of conjugate gradient technique, can be sum-
marized as follows:

1. For m = 0, guess the initial control vector u,,

2. Solve the T-problem using u,, to obtain (T,),,
vector.

3. Solve the Z-problem using (T,),, to obtain (4,),,
vector.

4. Calculate the gradient vector g,, by equation (18).

5. Calculate the conjugate gradient parameter p,,
given by

T
P = T—g"—'gm—, with 1, =0ifm=0
Bm—18m- 1
where the superscript T refers to the transpose of a
vector.
6. Calculate the direction of search vector s,, where

m
Sy = —8nt+ HnSm—1-
7. Tterate on the control
Uy = um + im Sim

where 3, is the coefficient determined by performing a
1-dim. minimization along the direction of search.

8. Increase m and repeat steps 2-7 until specified
convergence crileria are satisfied.

During the above minimization procedure the evalu-
ation of J is needed for each iteration level m. Such
evaluations are done by approximating the definite
integrals in J in terms of finite sums of integrands with
weighting coefficients, that is by Gauss quadratures.
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F1G. 2. Performance index J for x = 0.001.

4. NUMERICAL RESULTS

Numerical results are presented for the model
problem of optimal boundary heating of a square
plate. The given control problem involves two para-
meters, namely Bi and «. It is interesting to note the
effects of limiting values of these parameters on the
optimal solutions. When the dimensionless Biot num-
ber Bi isidentically zero, the boundary condition (5) at
¥ = 1 reduces to the insulation boundary condition. In
this case the optimal solution of the contro} problem s
a trivial one for any value of 2. That is, no boundary
heating would be necessary with u = 0 as the
temperature distribution in the plate will be T(x, y) =
1 for Bi = 0. For this case, the quadratic performance
index J attains its absolute minimum, i.e. J becomes
equal to zero.

If the Biot number Bi tends to infinity the boundary
condition (5) reduces to the prescribed temperature
boundary condition T = 0 at y = 1. This limiting
value of Bi results in the requirement of the greatest
amount of boundary heating at x = 1 to obtain the
physical objective as nearly as possible for a fixed value
of a.

uly)

F1G. 3. Optimal control function u(y) for different « values
when Bi = 5.

As the weighting parameter « tends to zero there is
less and less constraint on the control function u. Thus,
the boundary control function may be chosen “freely”
to meet the desired objective. At the other extreme with
o having a very large value the temperature distri-
bution at the boundary section x = 0 would hardly
reach the desired level of 1 (for large values of Bi) due to
the heavy constraint that forces the control function to
zero. In fact, if both « and Bi are taken as infinitely
large the temperature distribution in the whole plate
would be a linear functionrangingfrom T = laty =0
toT =0aty = 1.

In Fig. 2, the performance index J is plotted against
the Biot number Bi for « = 0.001. It may be noticed
from the figure that for a fixed degree of constraint on u
(i.. for a fixed value of «) the dependency of J is almost
asymptotic for small and large values of Bi.

In Fig. 3, the optimal boundary heat flux u is plotted
as a function of y for different values of the weighting
parameter « when Bi is fixed as 5. For smaller values of

F1G. 4. Boundary temperature T(0, y) for different x values
when Bi = 5.
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«, the control function u adopts higher distributed
values as shown in the figure. Figure 4 represents the
boundary temperature distribution at x = 0 against
the space coordinate y for different & values when Bi =
5. Thus the last two figures are the optimal solutions
corresponding to the same set of a values when the Biot

number Bi is held fixed.
Figures 5 and 6 represent the optimal solutions

when the weighting parameter « is held fixed at 0.001.
In Fig. 5 the optimal control function u is shown as a
function of 'y for different values of Bi, and cor-
respondingly the boundary temperature at x =0 is
shown for the same set of Bi values in Fig. 6.

5. CONCLUSIONS

A simple model problem in optimal control heat
transfer is analyzed by numerical methods. In parti-
cular the heating of a square solid plate by an optimal
boundary heat flux is investigated. The physical objec-
tives of the problem are taken as to bring the tempera-
ture of a part of the boundary to a desired level by
applying a “minimum” amount of a boundary heat
flux.

First, the necessary conditions for optimality of a
performance index which characterizes the physical
abjectives are found by calculus of variations using a
Lagrange multiplier technique. These necessary con-
ditions are then discretized in space by using the
boundary integral equation methods. Minimization of
the performance index by the conjugate gradient
method of optimization then yields the optimal sol-
utions of the problem, that is, the optimal boundary
heat flux and the corresponding temperature distri-
bution in the plate. Some conclusions may be drawn
from the analysis of the control problem, which may be
given as follows:

(1) The present model problem involves two para-
meters which strongly influence the optimal solutions.
The Biot number Biis a physical parameter which may

F1G. 5. Optimal control function u(y) for different Bi values
when 2 = 0.001.
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be fixed in a given situation. The weighting parameter 4
may, on the other hand, be interpreted as a free
“design” parameter, which has to be chosen angd
adjusted in the light of experience and computer
results to achieve the stated objectives on a relative
basis. The cost of the fuel consumption for the
boundary heat flux may play an important role in
choosing the value for a.

(2) As the control problem falls into the class of
boundary control, the boundary integral equation
methods constitute especially very efficient numerical
techniques of space discretization, with no need of any
domain integrations.

(3) Although the finite element or finite difference
methods could have been utilized for the present
model problem, the boundary integral equation me-
thods have a distinct advantage over such domain
type of methods in that the dimensionality of the
problem is practically reduced by one since one deals
with integral equations defined over the boundary
only.

(4) The “observation” and “control” may be present
in the domain as well as on the boundary in other
control problems. Such cases would arise if, for
example, the temperature profile of the whole plate is
controlled by a distributed heat source in the plate.
The boundary integral equation methods could still be
used for such problems. However, simple numerical
“domain” quadratures would be necessary in order to
evaluate some “source” terms in the partial differential
equations of the necessary conditions for optimality.

(5) Computer programs available in the literature
for the boundary integral equation and conjugate
gradient methods are very helpful in the application of
these methods to a wide variety of optimal control
problems in heat transfer.

Fia. 6. Boundary temperature T(0, y) for different Bi values
when 2 = 0.001.
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METHODES DE L’EQUATION INTEGRALE LIMITE ET DU GRADIENT CONJUGE POUR
LE CHAUFFAGE OPTIMAL DES SOLIDES AUX FRONTIERES

Résumé—Un modéle simple de probléme de chauffage optimisé de solides par les frontiéres est analysé par
des méthodes numériques. Le but physique de ce probléme 4 “commande optimale permanente™ est d’obtenir
un profil de température donné le long d'un segment de la frontiére solide avec une quantité de chaleur
minimale. Les méthodes de I'équation intégrale limite sont utilisées dans les discrétisations spatiales des
conditions nécessaires pour l'optimalité d'un indice de performance qui caractérise mathématiquement
I'objectif physique. On utilise la méthode du gradient conjugué pour minimiser I'indice de performance.

~ Des résultats numériques sont présentés pour différentes valeurs des paramétres du probléme qui sont un
nombre de Biot et un paramétre de pondération dans Tindice de performance. Ce dernier paramétre agit
comme un paramétre libre “de conception” qui commande le degré d’achévement du profil de température
désiré en fonction de la quantité d'énergie consommée 4 travers la paroi chauffée. On montre aussi que la
solution numérique algorithmique constitue une nouvelle procédure efficace qui a des avantages distincts de

ceux des autres méthodes connues.

GRENZ-INTEGRAL-GLEICHUNG UND KONJUGIERTE GRADIENTEN VERFAHREN FUR
OPTIMALE HEIZUNG EINER FESTSTOFFBERANDUNG

Zusammenfassung—Ein einfaches Modellproblem zur optimalen Randbeheizung von Festoffen wird mit
numerischen Verfahren untersucht. Das physikalische Ziel dieses “steady-state optimal control”. Problems
ist es, ein vorgegebenes Temperaturprofil entlang eines Segments der Feststoffberandung mit minimalem
Gesamtwirmestrom, der als Kontrollfunktion dient, zu erhalten. Die Grenz-Integral-Gleichungs-Verfahren
wurden vorwiegend zur Optimierung eines Leistungsindex, der das physikalische Ziel mathematisch
charakterisiert, bei der Diskretisierung der geforderten Bedingungen benutzt. Zur Minimierung des
Leistungsindex wurde das konjugierte Gradientenoptimierungsverfahren verwendet.

Numerische Ergebnisse werden fiir verschiedene Werte des Problemparameters, der aus einer Biot-Zahl
und einem Wichtungs-Parameter im Leistungsindex besteht, gezeigt. Es wird bewiesen, daB sich der
Wichtungsparameter wie ein freier “Form”™-Parameter verhilt, der den Grad der Ubereinstimmung eines
bestimmten Temperaturprofils in Abhangigkeit von der durch die Randheizung verbrauchten Gesamtlei-
stung kontrolliert. Es wird zusitzlich hervorgehoben, daB der vorgeschlagene numerische L&sungsalgorith-
mus fiir Probleme der Randkontrolle einen neuen und wirkungsvollen Lésungsweg darstellt, der

verschiedene Vorziige gegentiber anderen verfiigbaren Methoden besitzt.
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HCMOJb30BAHHE '’PAHUYHOIO HHTEMPAJTLHOTO YPABHEHHSA U
CONPAXEHHBIX TPAAHEHTHBIX METOAOB AJisi ONPEAEJIEHHA
ONTHMAJIBHOIO rPAHHYHOI'O HAIPEBA TBEPABIX TEJI

AunoTauHa —YHCIIEHHBIMI METOIAMH AHAIHIMPYECTCA MPOCTAas MOJe1b ONTHMAILHOrO TpaHHYHOro
narpesa Teepasix Tea1. C ¢usmucckoil ToukH 3penus npodiesa “"CTALHOHAPHOrO ONTHMAILHOTO
KOHTPOA" 3aK1lo¥aeTcs B JOCTHKEHHMHM HeoGxoammoro npodils Temueparyp BIOIb yHaCTKa
TBepI0il IpaHHUb!I NPH MHHHMALHOM BEIHYHHE TEMIOBOTO NMOTOKA HA TPAHHIE, HIPAIOWETO POL
kouTpoanpytoweii ¢gynkunn. MeToab! rpaHHYHOTO MHTErpaiLHOTO ypasHehHs 3QDCKTHBHO HCMOL-
3yIOTCA 18 MPOCTPAHCTBEHHOMN MHCKPETH3AUHH YCJI0BHIE, HEODXOIMMBLIX A1 MOIYYCHHS ONTHMAIL-
HOTO PEAHMHOTO HHIEKCA, MATeMAaTHYECKH XapaxTepuiywowero ¢uiudeckyto nelb 3amaun. [Jas
MHHHMH32LHH PEAUMHOIO HHICKCA HCMOALIYETCH CONPAKCHHBI IPAAHCHTHBIT METOI ONTHMH3AUNMN.

[MpeacTaBaensl 4HCICHHLIE 3HAYCHHS PA3/IMYHLIX NAPAMETPOB 330A4H, BXOUSUIHX B PERHMHBL
HHaeke, BkItovatontitit uncio buo i s3seuennslii mapaseTp. Boickasano COMHCHHE B CNPABELTHBOCTH
YTBCPAJICHHA, 4TO B3IBCLUICHHLIT NapameTp BedeT cedf kak cBoOoawulil “‘pacueTHbIil” nmapaserp.
onpelesIOIHIl cTeneds JOCTHXEHHS HeoOXoOHMOTo npodniIf TeMneparyp B 3aBHCHMOCTH OT
KOIHYECTBA MOITOLIAEMOll 32 CHeT TPaHHYHOro Harpeea JHepruu. [lokasano Takxe, 4TO MPEII0KeH-
Hblfi aIrOPHTM YHCIECHHOTO pelIeHHs 3aJayH TPaHHYHOIO KOHTPOIs NPeACTaBlIfeT o000l HOBbI
H ppeKTHBHBIN MeTOA peuleHHsA, KOTOphii 00.1a1aeT SABHBIMH NPESHMYLICCTBAMI Ieped ApYTHMU

HMCIOLIHMHCH METOIaMu.



